
Linear-Time Dynamics using Lagrange Multipliers
PHILIP HUANG, University of Toronto, Canada
HANNA JIAMEI ZHANG, University of Toronto, Canada

This work presents an implementation of David Baraff’s 1996 work on
Linear-Time Dynamics using Lagrange Multipliers. The implementation was
done in MATLAB and results are shown on 2D serially jointed structures,
trees, and closed-loop chain structures. The dynamics of these systems are
handled by 3 different methods 1) standard matrix inversion, 2) a sparse
𝑂 (𝑛) factorization method, and a 3) dense 𝑂 (𝑛3) factorization method.
Comparisons of the performance of these different solvers are tested on
these systems at varying scales (i.e. size of the structure) are made.

ACM Reference Format:
Philip Huang and Hanna Jiamei Zhang. 2021. Linear-Time Dynamics using
Lagrange Multipliers. ACM Trans. Graph. 1, 1 (December 2021), 6 pages.
https://doi.org/1234567.1234567

1 INTRODUCTION
The simulation of dynamic systems with two or more rigid bod-
ies is a core problem in computer graphics and physics engines
with a variety of applications in animation, gaming and robotics.
For example, a humanoid robot can be simulated as a set of bodies
connected by different types of joints. There are two ways to formu-
late a multibody systems using dynamics principles. Either we can
model constraints in reduced-coordinates by removing degrees of
freedom (DoF) from the system, or introduce additional forces in the
maximal coordinates to satisfy the constraints. Lagrange multipliers
fall in the latter categorization where the system state is expressed
using a simpler set of𝑚 maximal coordinates and constraints are
enforced by constraint force.
In this project, we try to re-implement the linear-time sparse

dynamics solver first proposed in [Baraff 1996], which is based on
the Lagrange multipliers approaches. While previous works have
achieved direct, linear-time solutions for a serial chain (a sequence
of links) with recursive articulated-body method [Featherstone and
Orin 2000], Baraff’s solver works for any acyclic set of primary
constraints (i.e. trees). For example, for a set of 𝑛 bodies with 𝑛 − 1
constraints, the method takes 𝑂 (𝑛) time to compute the constraint
forces in the dynamics equation. Furthermore, it is also easy to
incorporate auxiliary constraints, such as loop closures, collisions,
and fixed joints, into the algorithmic framework. Typically, the
number of auxiliary constraintd (denoted as 𝑘) is small compared
to 𝑛, so the added cost to formulate and solve the system is simply
𝑂 (𝑛𝑘 + 𝑘3) = 𝑂 (𝑛𝑘), which remains efficient.

Authors’ addresses: Philip Huang, , University of Toronto, Toronto, Canada; Hanna
Jiamei Zhang, , University of Toronto, Toronto, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/12-ART $15.00
https://doi.org/1234567.1234567

2 CONSTRAINT-BASED MECHANICS WITH LAGRANGE
MULTIPLIERS

2.1 Primary Constraints
The dimension of the bodies used in our implementation is 𝑑𝑖𝑚(𝑖) =
3, i.e. 2 DoFs for translation in 2D and 1 DoF for rotation. The 𝑖𝑡ℎ
body’s velocity is expressed as a vector ¤q ∈ R3, the force acting
on the 𝑖𝑡ℎ body is F𝑖 ∈ R3, and the acceleration on the 𝑖𝑡ℎ body is
¥q ∈ R3. The following relationship holds for each body: M𝑖 ¥q𝑖 = F𝑖
Where M𝑖 is a 3 × 3 symmetric positive definite matrix which

describes themass properties of body 𝑖 . In this work only rectangular

bodies are studied for which the moment of inertia is 𝑚(𝑤2 + ℎ2)
12

with𝑚,𝑤 , ℎ being the mass, width, and height of the 2D rectangle
body. For this workM𝑖 is not time-varying as the rectangular blocks
are considered as rigid and time-invariant structures. The entire
𝑛-body system is expressed as follows,

¤q =
[
¤q1 ¤q2 . . . ¤q𝑛

]
, F =

[
F1 F2 . . . F𝑛

]
,

M = diag(M1,M2, . . . ,M𝑛)

M¥q = F (1)

where diag(·) places inputs along the diagonals of a zero matrix,
forming a block diagonal matrix. The dimension of a constraint
is the number of DoF’s the constraint removes from the system.
Consider a serial chain of blocks with n bodies. Each constraint
between adjacent blocks removes 2 DoFs from the system (i.e. the
x,y position of the joint connecting the next block is determined by
the pose of the previous block, leaving only orientation of the joint
as a remaining free DoF). Suppose we can describe the 𝑖th constraint
with an equation 𝐶𝑖 (q) = 0. If we differentiate this with respect to
time, we arrive at the velocity constraint ¤𝐶𝑖 (q, v) = j𝑖1v1 + · · · +
j𝑖𝑛v𝑛 = 0. To solve for the constraint forces, we need one more
time derivative to arrive at the acceleration constraint ¥𝐶𝑖 (q, v, ¤v) =
j𝑖1 ¤v1+𝜕𝑡 (¤𝐶𝑖 (q𝑖1))v1+· · ·+j𝑖𝑛 ¤v𝑛+𝜕𝑡 (¤𝐶𝑖 (q𝑖𝑛))v𝑛 . Merging the known
terms together leaves the form: j𝑖1 ¤v1+· · ·+j𝑖𝑘 ¤v𝑘 +· · ·+j𝑖𝑛 ¤v𝑛+ ĉ𝑖 = 0.
In our 2-D case, j𝑖𝑘 is a matrix inR2×3 and ĉ𝑖 is a column vector in
R2×1.

However, since the constraint ¥𝐶𝑖 (q, v, ¤v) is applied in the accelera-
tion space, numerical errors in integration could lead to drifts in the
velocity constraint. ¤𝐶𝑖 (q, v) and the position constraint 𝐶𝑖 (q). One
way to rectify this is to apply a spring-like feedback force−𝑘𝑞𝐶𝑖 (q)−
𝑘𝑣 ¤𝐶𝑖 (q, v) and solve for ¥𝐶𝑖 (q, v, ¤v) = −𝑘𝑞𝐶𝑖 (q) −𝑘𝑣 ¤𝐶𝑖 (q, v) [Witkin
1997]. This is straight forward to implement since we can combine
the feedback with the constant term ĉ𝑖 and solve for:

j𝑖1 ¤v1 + · · · + j𝑖𝑛 ¤v𝑛 + c𝑖 = 0

In this formulation primary constraints are expressed through
the body accelerations via a linear condition and affect only a pair
of bodies. To enforce acceleration conditions on the constraints, the
workless constraint force is applied in the orthogonal direction of

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2021.

https://doi.org/1234567.1234567
https://doi.org/1234567.1234567

2 • Philip Huang and Hanna Jiamei Zhang

the velocity and takes the form:

F𝑖𝑐 =
[
j𝑡
𝑖1 . . . j𝑡

𝑖1
]
𝜆𝑖 (2)

where 𝜆𝑖 ∈ R2 is the lagrange multiplier of the 𝑖th constraint. To
express 𝑟 constraints the following acceleration conditions must
hold:

J¤v + c = 0 (3)

where

J =


j11 j12 . . . j1𝑛
.
.
.

.

.

.
.
.
.

j𝑟1 j𝑟2 . . . j𝑟𝑛

 , c =

c1
.
.
.

c𝑟

 , 𝜆 =


𝜆1
.
.
.

𝜆𝑛


It follows that the constraint forces have the form J𝑇 𝜆 which

can be determined by finding 𝜆 such that the constraint forces and
external forces together produce motions that satisfy the constraints
(i.e. Equation 3).

2.2 Solving dynamics system with 𝐽𝑀−1 𝐽𝑇

This is a simple method to solve for the 𝜆’s used to get the constraint
forces. Given an unknown constraint force J𝑇 𝜆 and known net
external force Fext the following holds, M¤v = J𝑇 𝜆 + Fext and can be
rearranged to get

¤v = M−1J𝑇 𝜆 +M−1Fext (4)

Substituting Eq. 4 into the constraints (Ex. 3) yields the following
for which 𝜆 can be solved for using matrix inversion:

J(M−1J𝑇 𝜆 +M−1Fext) + c = 0

A𝜆 = b

A = JM−1J𝑇 b = −(JM−1Fext + c)

3 ALTERNATIVE SPARSE FORMULATION
The matrix A above is not sparse if the system has a branching
instead of serial structure, without sparsity it is costly to invert A
to solve. An alternative formulation considers the following,(

M −J𝑇
J 0

) (
y
𝜆

)
=

(
0
−c

)
H =

(
M −J𝑇
J 0

)
Solving this would yield the same constraint forces as the method

in Sec. 2.2 above. The benefit of this formulation is that H is always
sparse. We can factor H as H = LDL𝑇 , where L is a lower-triangular
block matrix with all ones on the diagonal, andD is a block-diagonal
matrix. To do this, the first step is to re-order H so that L will be just
as sparse as H. A simple way to do this is to use depth first search.

3.1 Ordering 𝐻
First, we describe the data structure used to store the tree-like multi-
body system. We use a node to store the relevant data for every
body/constraint. Each body node has an id, the mass matrix, a par-
ent, and a list of children. The parent of a body node is either empty
if the body is the root node, otherwise is the id of the parent con-
straint. The children of a body node is the list of the ids of all the

child constraints. Each constraint node also has an id, the Jacobian
matrix, a parent and a single child. The parent and child of a con-
straint node is always the id of the parent/child body connected by
the constraint.
Starting from the root node, we use a depth-first traversal to

sort every node in the tree into a list. The procedure is shown the
appendix of [Baraff 1996]. Once we have a forward traversal order
(ending with the root node last), we can reorder the non-zeros blocks
H𝑖 𝑗 according to that order. For every new row 𝑖 in H, we fill the
block H𝑖 𝑗 with the corresponding Jacobian matrix if 𝑗 is a child or
parent node of 𝑖 . For every row corresponding to a body node, we
also place the corresponding mass matrix on a diagonal block H𝑖𝑖 .

3.2 An 𝑂 (𝑛3) Factorization Method
We can treat H as a dense matrix and try to solve the system
LDL𝑇 x = b as follow. First, we overwrite the upper triangular
portion of H with L𝑇 , then save the entries of D onto the diagonal
of H. This part requires 𝑂 (𝑛3) time. Then, we can solve Lx(1) = b,
followed by Dx(2) = x(1) , and finally L𝑇 x = x(2) . All of these can
be done in𝑂 (𝑛2) time. The detailed pseudocode is shown in Section
7.2 of [Baraff 1996].

3.3 An 𝑂 (𝑛) Factorization Method
In our setup, H is sparse and we can simplify the calculations. Note
that a block H𝑖 𝑗 is nonzero only if 𝑖 ∈ child(𝑗) or 𝑗 ∈ child(𝑖). After
ordering the matrix, we note that in each row, only one nonzero
block occurs to the right of the diagonal. This is because every
node has at most one parent. This makes it much easier to run the
factoring and solving procedures in the previous section. In fact,
both the factorization and the solving procedure reduce to 𝑂 (𝑛)
time. The pseudocode is also shown in Section 7.3 of [Baraff 1996].

After computing x, we extract the appropriate elements that form
𝜆, and then compute ¤v = M−1 (J𝑇 𝜆 + F𝑒𝑥𝑡).

4 AUXILIARY CONSTRAINTS
Sec. 2.2 and 3 describe how to compute 𝜆 (and thus the primary
constraint force in response to an external force) for primary con-
straints, i.e. between two bodies. Constraints such as loop closures,
contacts, and constraints to fixed points in space cannot be for-
mulated as primary constraints. They fall under something called
auxiliary constraints.

4.1 Constraint Anticipation
When computing the Lagrangian multipliers for the auxiliary con-
straints, we will also anticipate the response of the primary con-
straints due to the auxiliary constraint forces. Once we have com-
puted the auxiliary constraint forces, we go back and compute the
primary constraints without worrying about the effect of auxiliary
constraints since we have already anticipated the effects.

First, let the following equation represent the auxiliary constraint
forces (in acceleration space).

a =
©­­«
𝑎𝑖
.
.
.

𝑎𝑘

ª®®¬ = J𝑎 ¤v + c𝑎 (5)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2021.

Linear-Time Dynamics using Lagrange Multipliers • 3

Let the constraint force due to the 𝑖th constraint to have the form
k𝑖𝜇

where k𝑖 is a column vector as the same dimension as v. We define
K as the k-column matrix

K =
(
k1 k2 . . . k𝑘

)
For loop closures and fixed points, the matrix K is simply (J𝑎)𝑇 .

The external force seen by the auxiliary constraint is the sum of the
primary response and the original external force. We define that as

F̂ext = J𝑇 𝜆 + Fext (6)
This allows us to calculate the acceleration without the auxiliary

constraint ¤vaux = M−1F̂ext. Now we can calculate the auxiliary
constraint forces. We make use of the anticipated response matrix
M̂−1, which allows us to compute the system’s acceleration

¤v = M̂−1K𝜇 + ¤vaux (7)
Substituting this to the auxiliary constraint equation, we can

solve for the multipliers 𝜇

a = J𝑎 ¤v − c𝑎 = J𝑎M̂−1K𝜇 + (J𝑎 ¤vaux + c𝑎) (8)

It is hard to compute M̂−1 directly, but we can compute M̂−1K
column by column. Given the direction of the 𝑖th auxiliary constraint
force k𝑖 , we know the anticipated response is M̂−1k𝑖 . This consists
of two parts - the system’s response to a force in the direction k𝑖 , and
the primary constraints’ response to k𝑖 . Given a primary response
Fresp = J𝑇 𝜆 where A𝜆 = −JMk𝑖 , we can write M̂−1k𝑖 as

M̂−1k𝑖 = M−1 (Fresp + k𝑖) (9)

We can then express M̂−1K as
[
M̂−1k1 M̂−1k2 . . . M̂−1k𝑘

]
. The

cost to compute each column M̂−1k𝑖 is mainly from solving Fresp,
which is 𝑂 (𝑛). Since K has 𝑘 columns, the total cost is 𝑂 (𝑘𝑛).

4.2 Computing the Net Constraint Force
Oncewe can express M̂−1K, we can computemultipliers 𝜇 by solving
equation 8 with a standard linear system solver. With the auxiliary
constraint force K𝜇, we can compute the primary constraint force
to the combined external and auxiliary constraint force Fext + K𝜇.
That is just solving A𝜆 = −(JM−1 (K𝜇 + Fext) + b)

The final constraint force due to both the primary constraint and
auxiliary constraints is just K𝜇 + J𝑇 𝜆.

5 RESULTS

5.1 Test Environment
The three different Lagrange multiplier-based solvers for system
dynamics described above are implemented in MATLAB and exe-
cuted using an Intel Core i7-7500U processor with 2 cores at 2.90
GHz. The test environment consists of uniform rectangular bodies
with width 1 unit, height 5 units with joints located 2 units from the
COM in the length-wise direction and uniformly distributed mass
of 1 unit. The local body frame is chosen to be centered at the COM
with x-axis aligned width-wise and y-axis aligned length-wise. The

joint in the positive y direction of the local frame will be referred to
as the anterior joint and the other the posterior joint. These bodies
were arranged into serial arms and binary trees. The three different
solvers were used on these two cases to evaluate and compare per-
formance quantitatively with computation time. Simulations results
presented below used a 0.01 second timestep for a 5 second time
period.
The primary constraints for serial arm structures are expressed

using constraints between successive joints, i.e. anterior joint con-
nected with posterior joint of the succeeding structure. The primary
constraints for the binary tree structure are expressed using BFS
tree traversal and indexing of parent and children in trees to connect
appropriate anterior and posterior joints of the bodies that make up
the tree.
An auxiliary constraint is used to fix the posterior joint of the

root body to a fixed point in space for serial arm and binary tree
structures. The location of the anterior joint of the last body is
constrained to be the same as the location of the posterior joint of
the root body in order to create a free floating closed-loop chain.

5.2 Implementation
The naive approach detailed in Sec. 2.2 was implemented using
MATLAB’s native mldivide function. We implement the alternative
sparse factorization methods as described in 3 with MATLAB func-
tions and data structures following the pseudo-code from Baraff’s
paper [Baraff 1996]. The naive approach from Sec. 2.2 will be re-
ferred to as (1) A/b, and the factorization approaches from Sec. 3 will
be referred to as (2) Sparse, and (3) Dense in the following sections.
The qualitative metric used to evaluate the performance of the

algorithms was computation time. This was measured using the
MATLAB tic toc function. The values recorded were average time
to compute the 𝜆’s for only primary constraints. Only the lines of
code relevant to system solving were included in this measurements
of complexity. When considering auxiliary constraints, the first
step is still computing the primary constraints 𝜆’s for constraint
anticipation. Following that, there is simply more 𝜆’s to compute
according to Section 4. Thus, time complexity results for the three
solving methods are thus shown for primary constraints to compare
the performance of the algorithms alone.
For serial arm structures a valid initialization is given to the

structure such that all primary constraints begin fulfilled. For the
case of the binary tree structure, no such initialization was given. All
blocks began in the same initial zero position, so primary constraints
started out unfilled. Given an appropriately small time scaling (0.01s)
the solvers was able to compute appropriate feedback forces to
arrange the blocks from initial zero configurations into the binary
tree structure with a few hundred iterations. Similarly, for the closed
loop structure, primary and auxiliary constraints were not fulfilled
at startup. The initial block positions were set at position (0,0) with
relative orientation between successive blocks set at −3𝜋

4 . This was
done so that the system was close to fulfilling primary and auxiliary
constraints at initialization to avoid very large constraint forces in
the first few iterations of the simulation.

The time performance of the three solving methods is evaluated
with only the primary constraint calculation, but can be measured

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2021.

4 • Philip Huang and Hanna Jiamei Zhang

n (1) A\b (2) Sparse (3) Dense

2 2.23E-05 3.89E-04 3.94E-04
5 1.28E-04 6.52E-04 1.20E-03
10 3.06E-04 1.00E-03 4.00E-03
20 9.34E-04 1.90E-03 1.97E-02
50 2.30E-03 4.10E-03 2.38E-01
100 8.50E-03 8.00E-03 1.67E+00
200 6.47E-02 1.90E-02 1.35E+01

Table 1. Algorithm performance on serial bar structures. Quantities pre-
sented are in units of seconds per timestep (i.e. the average time to solve
for 𝜆). Table quantities were obtained using a value of 𝑑𝑡 = 0.01 for the
timestep over 5 second time period.

n (1) A\b (2) Sparse (3) Dense

3 1.35E-05 3.98E-04 5.27E-04
7 1.35E-05 9.15E-04 2.60E-03
15 5.13E-04 2.00E-03 1.05E-02
31 1.40E-03 4.20E-03 5.55E-02
63 4.60E-03 5.40E-03 3.99E-01
127 2.27E-02 1.05E-02 3.67E+00
255 2.44E-01 3.82E-02 3.97E+01

Table 2. Algorithm performance on binary tree structures. Quantities pre-
sented are in units of seconds per timestep (i.e. the average time to solve
for 𝜆). Table quantities were obtained using a value of 𝑑𝑡 = 0.01 for the
timestep over 5 second time period.

in a similar manner for auxiliary constraints (see code implementa-
tion).
The Jacobians of all systems are implemented using MATLAB’s

symbolic math tool box and symbolic derivative functions. To up-
date these variables with numerical quantities these functions are
converted with the matlabFunction function. Forward Euler is used
to step the systems forward in time by 𝑑𝑡 each time step forward.

5.3 Rigid Body Systems: Primary Constraints Only
The runtime of the computation of the 𝜆’s for the primary contraint
forces was evaluated for serial bar linkages and binary trees of
varying sizes. Results are detailed in the below subsections.

5.3.1 Serial Bar Linkages. The left image in Figure 4 shows a visu-
alization of the serial bar linkages considering only primary con-
straints. Table 1 summarizes the runtime data of each solving tech-
nique on the serial bar linkages structure. Figure 1 is a graph of the
performance of each solver and relevant fitting data.

5.3.2 Binary Tree Structure. The top image in Figure 5 shows a
visualization of the binary tree structure considering only primary
constraints. Table 2 summarizes the runtime data of each solving
technique on the binary tree structure. Figure 2 is a graph of the
performance of each solver and relevant fitting data.

Fig. 1. Plot of data from Table 1 with 3rd order polynomial trendlines fitted
to the data obtained from (1) A(

¯
blue) and (3) Dense (yellow) solving methods

and a linear trendline fitted to the data obtained from the (2) Sparse (red)
solvingmethods.𝑅2 values for each of these curve fits are noted in the legend
at the top. Note that the data for (3) Dense is plotted on the right vertical
axis as the time complexity is way higher than the other two methods which
are plotted on the left vertical axis.

Fig. 2. Plot of data from Table 2 with 3rd order polynomial trendlines fitted
to the data obtained from (1) A(

¯
blue) and (3) Dense (yellow) solving methods

and a linear trendline fitted to the data obtained from the (2) Sparse (red)
solvingmethods.𝑅2 values for each of these curve fits are noted in the legend
at the top. Note that the data for (3) Dense is plotted on the right vertical
axis as the time complexity is way higher than the other two methods which
are plotted on the left vertical axis.

5.4 Rigid Body Systems: Primary and Secondary
(Auxiliary) Constraints

To evaluate the performance of our implementation of auxiliary
constraints the closed-loop four-bar linkage, fixed base serial bar
linkages, and fixed base binary tree. Results for this section are
shown through qualitative results.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2021.

Linear-Time Dynamics using Lagrange Multipliers • 5

Fig. 3. Visualization of the 𝑛 = 4 four-bar linkage structure using 𝑑𝑡 = 0.01
over 5 second time period. Structure states are shown overlaid over one
another for equally spaced timepoints over the total simulation time period.
The figure on the left is without any auxiliary constraints, that on the right
is with one auxiliary constraint fixing the base body’s posterior joint.

Fig. 4. Visualization of the 𝑛 = 5 serial-arm structure using 𝑑𝑡 = 0.01 over
5 second time period. Structure states are shown overlaid over one another
for equally spaced time points over the total simulation time period. The
figure on the left is without any auxiliary constraints, that on the right is
with one auxiliary constraint fixing the base body’s posterior joint.

5.4.1 Closed-Loop Four-bar Linkage. Figure 3 shows the perfor-
mance of method (1) A/b on a closed-loop four-bar linkage. Any
solving method could have been used to solve for primary and
auxiliary constraints.

5.4.2 Fixed Base Serial Linkages. Figure 4 shows the performance of
method (1) A/b on a closed-loop four-bar linkage with and without
an auxiliary constraint constraining the motion of the base joint.
Any solving method could have been used to solve for primary and
auxiliary constraints.

5.4.3 Fixed Base Binary Tree. Figure 5 shows the performance of
method (1) A/b on a closed-loop four-bar linkage with and without
an auxiliary constraint constraining the motion of the base joint.
Any solving method could have been used to solve for primary and
auxiliary constraints.

Fig. 5. Visualization of theℎ = 3, 𝑛 = 7 binary tree structure using 𝑑𝑡 = 0.01
over 5 second time period. Structure states are shown overlaid over one
another for equally spaced time points over the total simulation time period.
The figure on the top is without any auxiliary constraints, that on the bottom
is with one auxiliary constraint fixing the base body’s posterior joint.

6 DISCUSSION
The three solving methods performed as expected on both serial bar
linkages and binary tree structures. As per Figures 1 and 2, as 𝑛, the
number of bars to be simulated increases the time complexity in all
cases. With respect to our implementation of method (1) A/b the 3rd
order polynomial fit to the data in both test cases yields an 𝑅2 value
of 1, meaning that this is a perfect fit. This verifies that method (1)
A/b is indeed O(𝑛3). Similarly, it is clear that our implementation
of method (3) Dense is also verified to be O(𝑛3) with 𝑅2 values of 1
for both test cases. For method (2) Sparse, the data is fit to a linear
trendline with an 𝑅2 value of 0.992 and 0.977 for serial bar linkages
and binary tree structures respectively. This indicates that the data
is very reasonably following a linear trend and it follows that this
method is indeed a linear algorithm capable of O(𝑛) or linear time
performance.
Although method (1) A/b and method (3) Dense are O(𝑛3) al-

gorithms, method (1) A/b performs multiple orders of magnitude
faster than method (3) Dense. It performs so well that it is on the
same order of magnitude as the (2) Sparse method O(𝑛) and actually
outperforms it for up to approximately 100 bars the serial bar linage
tests and up to approximately 75 bars in a binary tree. This is likely
due to the optimizations MATLAB does for their mldivide function.
This is consistent with our understanding of the (2) Sparse method
having superior performance compared to the naive (1) A/b method
on trees and branching structures.

As to Figure 2, the 4𝑡ℎ data point for the binary tree ℎ = 5, 𝑛 = 15
using method (2) Sparse looks quite off the linear trendline. This is
likely an outlier due to experimental error during data collection (i.e.
processing power being diverted for some other parallel computing
task).

It was noted that a major bottleneck of this implementation was
not the algorithm itself but the method we chose to build the system
Jacobians. The MATLAB symbolic toolbox, symbolic derivatives,
and matlabFunction function used to compute our system Jacobians
doesn’t handle the computation of higher-order system derivatives
efficiently and thus performed very poorly (on the order of hours)
when there were more than 50 bodies in the simulation. Once the
system Jacobians were computed, the Euler timestepping took time
that scales with the results presented in Tables 1 and 2.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2021.

6 • Philip Huang and Hanna Jiamei Zhang

7 CONCLUSIONS AND NEXT STEPS
The main contribution of Baraff’s 1996 paper was for a method that
enables computation of system dynamics in linear time compared to
3rd order polynomial time of other state of the art methods. In our
project we confirm this performance in a simple modular MATLAB
implementation of his work and compare it to other less efficient
methods for solving the same problem. Further work with this
could involve trying different timestepping methods, experimenting
with different structures or auxiliary constraints (e.g. friction and

contacts), extending to simulate 3D objects, and optimizing the
Jacobian computations that were a bottleneck.

REFERENCES
David Baraff. 1996. Linear-time dynamics using lagrange multipliers. In Proceedings of

the 23rd annual conference on Computer graphics and interactive techniques. 137–146.
Roy Featherstone and David Orin. 2000. Robot dynamics: equations and algorithms.

In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), Vol. 1. IEEE,
826–834.

Andrew Witkin. 1997. An introduction to physically based modeling: Constrained
dynamics. Robotics Institute (1997).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: December 2021.

	Abstract
	1 Introduction
	2 Constraint-based Mechanics with Lagrange Multipliers
	2.1 Primary Constraints
	2.2 Solving dynamics system with JM-1JT

	3 Alternative Sparse Formulation
	3.1 Ordering H
	3.2 An O(n3) Factorization Method
	3.3 An O(n) Factorization Method

	4 Auxiliary Constraints
	4.1 Constraint Anticipation
	4.2 Computing the Net Constraint Force

	5 Results
	5.1 Test Environment
	5.2 Implementation
	5.3 Rigid Body Systems: Primary Constraints Only
	5.4 Rigid Body Systems: Primary and Secondary (Auxiliary) Constraints

	6 Discussion
	7 Conclusions and Next Steps
	References

